Behavioral Pattern Identification Through Rough Set Modelling

نویسندگان

  • Jan G. Bazan
  • James F. Peters
  • Andrzej Skowron
چکیده

This paper introduces an approach to behavioral pattern identification as a part of a study of temporal patterns in complex dynamical systems. Rough set theory introduced by Zdzis law Pawlak during the early 1980s provides the foundation for the construction of classifiers relative to what are known as temporal pattern tables. It is quite remarkable that temporal patterns can be treated as features that make it possible to approximate complex concepts. This article introduces what are known as behavior graphs. Temporal concepts approximated by approximate reasoning schemes become nodes in behavioral graphs. In addition, we discuss some rough set tools for perception modeling that are developed for a system for modelling networks of classifiers. Such networks make it possible to recognize behavioral patterns of objects changing over time. They are constructed using an ontology of concepts delivered by experts that engage in approximate reasoning on concepts embedded in such an ontology. This article also includes examples based on data from a vehicular traffic simulator useful in the identification of behavioral patterns by drivers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On-Line Elimination of Non-relevant Parts of Complex Objects in Behavioral Pattern Identification

We discuss some rough set tools for perception modelling that have been developed in our project for a system for modelling networks of classifiers for compound concepts. Such networks make it possible to recognize behavioral patterns of objects and their parts changing over time. We present a method that we call a method for on-line elimination of non-relevant parts (ENP). This method was deve...

متن کامل

Rough Set Approach to Behavioral Pattern Identification

The problem considered is how to model perception and identify behavioral patterns of objects changing over time in complex dynamical systems. An approach to solving this problem has been found in the context of rough set theory and methods. Rough set theory introduced by Zdzisław Pawlak during the early 1980s provides the foundation for the construction of classifiers, relative to what are kno...

متن کامل

Approximate Reasoning in MAS: Rough Set Approach Extended Abstract

In modeling multiagent systems for real-life problems, techniques for approximate reasoning about vague concepts and dependencies (ARVCD) are necessary. We discuss an approach to approximate reasoning based on rough sets. In particular, we present a number of basic concepts such as approximation spaces, concept approximation, rough inclusion, construction of information granules in calculi of i...

متن کامل

A NON-RADIAL ROUGH DEA MODEL

There are situations that Decision Making Units (DMU’s) have uncertain information and their inputs and outputs cannot alter redially. To this end, this paper combines the rough set theorem (RST) and Data Envelopment Analysis (DEA) and proposes a non-redial Rough-DEA (RDEA) model so called additive rough-DEA model and illustrates the proposed model by a numerical example.  

متن کامل

Modelling prognostic power of cardiac tests using rough sets

Rough sets (Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning about Data, Dordrecht: Kluwer Academic Publishers, 1991) is a relatively new approach to representing and reasoning with incomplete and uncertain knowledge. This article introduces the basic concepts of rough sets and Boolean reasoning (Brown FM. Boolean Reasoning: The Logic of Boolean Equations, Dordrecht: Kluwer Academic Publi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Fundam. Inform.

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2005